Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic graphs.

نویسندگان

  • Ali Shojaie
  • George Michailidis
چکیده

Directed acyclic graphs are commonly used to represent causal relationships among random variables in graphical models. Applications of these models arise in the study of physical and biological systems where directed edges between nodes represent the influence of components of the system on each other. Estimation of directed graphs from observational data is computationally NP-hard. In addition, directed graphs with the same structure may be indistinguishable based on observations alone. When the nodes exhibit a natural ordering, the problem of estimating directed graphs reduces to the problem of estimating the structure of the network. In this paper, we propose an efficient penalized likelihood method for estimation of the adjacency matrix of directed acyclic graphs, when variables inherit a natural ordering. We study variable selection consistency of lasso and adaptive lasso penalties in high-dimensional sparse settings, and propose an error-based choice for selecting the tuning parameter. We show that although the lasso is only variable selection consistent under stringent conditions, the adaptive lasso can consistently estimate the true graph under the usual regularity assumptions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Penalized Estimation of Directed Acyclic Graphs From Discrete Data

The Bayesian network, with structure given by a directed acyclic graph (DAG), is a popular class of graphical models. However, learning Bayesian networks from discrete or categorical data is particularly challenging, due to the large parameter space and the difficulty in searching for a sparse structure. In this article, we develop a maximum penalized likelihood method to tackle this problem. I...

متن کامل

CAM: Causal Additive Models, high-dimensional order search and penalized regression

We develop estimation for potentially high-dimensional additive structural equation models. A key component of our approach is to decouple order search among the variables from feature or edge selection in a directed acyclic graph encoding the causal structure. We show that the former can be done with non-regularized (restricted) maximum likelihood estimation while the latter can be efficiently...

متن کامل

Learning Directed Acyclic Graphs with Penalized Neighbourhood Regression

We consider the problem of estimating a directed acyclic graph (DAG) for a multivariate normal distribution from high-dimensional data with p ≫ n. Our main results establish nonasymptotic deviation bounds on the estimation error, sparsity bounds, and model selection consistency for a penalized least squares estimator under concave regularization. The proofs rely on interpreting the graphical mo...

متن کامل

Robust Estimation in Linear Regression with Molticollinearity and Sparse Models

‎One of the factors affecting the statistical analysis of the data is the presence of outliers‎. ‎The methods which are not affected by the outliers are called robust methods‎. ‎Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers‎. ‎Besides outliers‎, ‎the linear dependency of regressor variables‎, ‎which is called multicollinearity...

متن کامل

PenPC: A two-step approach to estimate the skeletons of high-dimensional directed acyclic graphs.

Estimation of the skeleton of a directed acyclic graph (DAG) is of great importance for understanding the underlying DAG and causal effects can be assessed from the skeleton when the DAG is not identifiable. We propose a novel method named PenPC to estimate the skeleton of a high-dimensional DAG by a two-step approach. We first estimate the nonzero entries of a concentration matrix using penali...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biometrika

دوره 97 3  شماره 

صفحات  -

تاریخ انتشار 2010